A Core-Stateless 1.4S Scheduler for P4-enabled
hardware switches with emulated HQoS

Ferenc Fejes™™, Szilveszter Nadas*, Gergé Gombos**, Sandor Laki**
*Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary
**Communication Networks Laboratory, ELTE Eétvas Lordnd University, Budapest, Hungary
{fejes, ggombos, lakis}@inf.elte.hu, szilveszter.nadas@ericsson.com

Abstract—Novel Internet applications often require low latency
and high throughput at the same time, posing challenges to access
aggregation networks (AAN). Low-Latency Low-Loss Scalable-
Throughput (L4S) Internet service and related schedulers have
been proposed to meet these requirements and also allow the
coexistence of Classic and L4S flows in the same system. AANs
generally apply Hierarchical QoS (HQoS) to enforce fairness
among their subscribers. It allows subscribers to utilize their
fair share as they desire, and it also protects traffic of various
subscribers from each other. The traffic management engines of
available P4-programmable hardware switches do not support
complex HQoS and L4S scheduling. In this demo paper, we
show how a recent core-stateless L4S Active Queue Management
(AQM) proposal called VDQ-CSAQM can be implemented in P4,
and executed in high-speed programmable hardware switches.
We also show how a cloud-rendered gaming service benefits from
the low latency and HQoS provided by our VDQ-CSAQM.

I. INTRODUCTION

In the past years, novel applications such as AR/VR, cloud
rendered gaming, HD or holographic video conferencing and
remote presence have emerged, requiring high bandwidth, low
latency or both. End users may have different subscriptions
and Internet access. As gigabit-speed access links became
widespread, the possibility of temporal and even permanent
overloads in the AAN has increased. These periods can
be handled by over-provisioning, but it has a high price:
high infrastructure cost and underutilization in most of the
time. HQoS is a widely adopted solution to ensure complex
resource sharing policies in AANs, where resource sharing
is controlled within and among traffic aggregates (TA), e.g.,
between operators, slices, users, and subflows of users. Though
this solution is limited, nowadays, HQoS is typically enforced
at the edge in network gateways, since all traffic going to
the rest of the network has to flow through the gateway. L4S
[1] introduces additional requirements on isolating L4S and
Classic traffic and handling them differently which is not
supported by existing HQoS solutions. In addition, it has been
shown in [2] that a core-stateless resource sharing method
called Hierarchical Per Packet Values (HPPV) can implement
HQoS by only modifying its packet marking algorithms and

Application Domain Specific Highly Reliable IT Solutions project has been
implemented with the support of the NRDI Fund of Hungary, financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme. Supported by the UNKP-20-4 New National
Excellence Program of the Ministry for Innovation and Technology from the
source of the NRDI Fund.

the schedulers in the network remain the same. According to
this concept, each packet is marked with a Packet Value (PV)
expressing the importance of the given packet in the traffic
mix at the edge of the network. The PVs are then used as an
incentive in the scheduler of network nodes to decide which
packet to forward and which packet to drop/mark with ECN
Congestion Encountered (CE) flag. In this core-stateless ap-
proach, resource sharing policies between TAs and also within
TAs can solely be defined by the packet marking strategy.
A key advantage of this solution is that new policies can be
introduced by only re-configuring the packet marking, keeping
the schedulers unchanged. In [1], this core-stateless concept
has been extended with the support of L4S requirements,
resulting in a novel L4S scheduler called Virtual Dual Queue
Core-Stateless Active Queue Management (VDQ-CSAQM)
and a prototype implementation in DPDK. In this demo, we
show that the lightweight design of VDQ-CSAQM enables its
realization in hardware switches with P4-programmable data
planes [3], only requiring a few simplifications and the careful
separation of computational tasks between control and data
planes. The resulting system can realize HQoS, meet the L4S
requirements, and operate in high-speed P4-switches.

II. P4 IMPLEMENTATION OF VDQ-CSAQM (FIG. 1)

Data Plane (DP): To implement VDQ-CSAQM [1] on pro-
grammable hardware we simplified the per-packet operations
as much as possible. As in the original design, two physical
queues are configured with a strict priority scheduling between
them. Non-ECT packets with packet value less then C'TV;
(Congestion Threshold Value) are dropped in the ingress
pipeline before queueing, while ECN CE marking happens at
egress. We have replaced Virtual Queues (VQs) of the original
algorithm with two groups of counters (counter overflow is
allowed) for each queue: arrivedBytes; counts the amount of
bytes arrived at Queue 7, while PvArrived; counts the bytes
carried in the packets with a given PV that arrived at Queue
1. The PV range is limited to 1024 different values (encoded
into 10 bits), which corresponds to a precision of 3% in the
range of 10 kbps to 1 Tbps.

Control Plane (CP): The coupling of the VQs is implemented
in the CP by also considering the counters of Queue O for
Queue 1. CP syncs PvArrived; from the DP in every 50 ms
that is used to calculate the Packet Value histograms for both
queues. The DP sends the arrivedBytes; counters as a digest

Python Control Plane

P4 Data Plane

L45

flows (iperf2 toal,

cuUBIC CC)

Classic_| user

o n
|
o

e =

(7
15 users using Classic Sender #1
Classic Sender_| {(Classic Sender #2 o

.
B . < Traffic
arnvedBytes; - Classic Sender #15) < Sender Marker
i PvArriveds(PV) 1 designated > |"~crwa-d ng | |f Uplink is not \l
.

CR Gaming S.

Monitoring ——

Calculate Histograms p
Maintain Virtual Queues [VQs) 15 users usin L4s Sender #1). InfluxDB
Determine Congestion Threshold Values (CTVs) g Siseriam b Grafana
A [) I._:lS Sender | Dashboard
Digest (5ms): Sync (50ms): Set (5ms): (iperf2 tool, H T
arnvedBytes | PVarrived v BBRV2 CC) . et emeeeeecesmeenemeeeeeme—eeemeeeeacnnn
\! L45 Sender #15

P4 Switch
w Traffic

("~ Bottleneck] Sink

__at downlink

Packet-Value

only) limited)

flaws

Queue 1 (Classic) Classic Sender ™=

Figure 1. P4 VDQ-CSAQM Implementation

message to the CP every 5 ms. Using these counters and their
history the CP maintains the two VQs. Based on the length of
the VQs we calculate a probability ¢; = V Q!9 /VQ; for
marking packets (p = 0, if the VQ length V' @Q); is below the
target). The new packet value threshold CT'V; is calculated as
the percentile of histogram ¢ at g;.

III. DEMO SCENARIOS

Fig. 2 illustrates our demo setup with a testbed consisting of
five nodes, each link between the nodes has 40 Gbps capacity.
1) The Traffic Sender generates the test traffic: 15 L4S and 15
classic background users are represented by 1 TCP flow per
user. An additional designated user sends a classic TCP and/or
a Cloud Rendered Gaming video flow. The gaming flow is sent
over UDP and it is not congestion controlled. It has 9 Mbps
average rate and temporal bursts can reach 29 Mbps peak
rate on 200 ms timescale. 2) The Packet-Value Marker runs
our DPDK implementation of simplified HPPV. By default
it assigns the same policy for all users (both background and
designated) representing equal sharing for all users. The traffic
class (L4S or Classic) is encoded to the DSCP field. The
gaming traffic is classified as L4S therefore it experiences very
small buffering delay; and it is non ECN capable, thus it might
be dropped in the AQM. In the HQoS case, the subflows of
the designated user are also identified and controlled by the
HPPV marker. 3) The P4 Switch (Stordis BF2556X-1T based
on Tofino ASIC) implements VDQ-CSAQM as highlighted in
Section II, using the default parameters of [1]. Its outgoing
port towards Sink node is rate limited at 1 Gbps, emulating
the bottleneck in the AAN. 4) The Traffic Sink terminates the
traffic of the users. It also emulates the propagation RTT (5 ms)
by delaying TCP acknowledgments. 5) The Monitoring node
collects the operational logs from the other nodes, stores them
in a time-series database (InfluxDB) and visualizes them on a
dashboard (Grafana) in real-time.

The demo as shown in the video at [4] covers three sce-
narios: 1) Equal sharing for all users and a designated user
with gaming traffic only: The packet value marking ensures
that users share the bottleneck capacity equally, resulting in
about 32 Mbps capacity share for each user. As a result,
the gaming traffic does not experience loss. This scenario
also shows that using CSAQM the unused resources can be
occupied by other flows, but if the rate of the gaming video is

Gaming | (¢l sender) 7

s Cloud Rendered Gaming ™
A\ fimpeg video-stream with 9 Mbps average rate /

Figure 2. Overview of the demo setup

increasing, CSAQM still saves the video stream from packet
drops. The experienced queueing delay is almost zero for L4S
and small for Classic flows. 2) Equal sharing for all users
and a designated user with both gaming and classic traffic:
The scenario demonstrates that resource sharing among end-
users is not enough to provide good quality of experience since
other traffic of the same user may also affect the performance
of loss-sensitive flows. The presence of a parallel classic flow
results in approx. 10-15% loss ratio in the gaming traffic,
significantly reducing the quality of experience in case of delay
sensitive, real-time applications like cloud rendered gaming.
The delay of the gaming traffic remains low. 3) HQoS and
a designated user with both gaming and classic traffic:
We use the previous scenario with a different packet value-
marking strategy, emulating hierarchical quality of service
(HQoS). In addition to the resource sharing policy among end-
users, a second policy-level is introduced, expressing a 4:1
weighting between the gaming and TCP traffic, respectively.
The weighting is solely implemented in the Marker node by
assigning larger PVs to packets of the gaming traffic with
higher probability in a way that the overall PV distribution
of the designated user remains unchanged. This means that
the rate of gaming traffic can be increased up to 4/5' of the
user’s capacity share without experiencing any packet loss. We
configured this high weight for gaming, because it is necessary
to avoid packet loss of its video stream even during its peak
periods. The lossless transmission is realized and it results in
good QOE for gaming. At the same time, the TCP session of
the designated user can utilize the rest of the user’s fair share
despite the burstiness of the gaming video traffic. For video
streams with more stable sending rates even smaller share of
the second policy-level weights would be adequate.

Note that resources are not reserved in advance and policies
are not communicated to the P4 Switch at all. Reconfiguration
of QoS policies only requires changes in the packet marking.

REFERENCES

[1]1 S. Nadas er al., “A congestion control independent L4S scheduler,” in
ACM/IRTF ANRW, 2020, pp. 45-51.

[2] S. Néadas et al., “Stateless resource sharing in networks with multi-layer
virtualization,” in /CC. IEEE, 2019, pp. 1-7.

[3] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87-95, 2014.

[4] E. Fejes et al., “Demo video,” in hitp://ppv.elte.hu/ic21, 2021-01.

