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Tracking Normalized Network Traffic Entropy
to Detect DDoS Attacks in P4
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Abstract

Distributed Denial-of-Service (DDoS) attacks represent a persistent threat to modern telecommunications networks:
detecting and counteracting them is still a crucial unresolved challenge for network operators. DDoS attack detection is
usually carried out in one or more central nodes that collect significant amounts of monitoring data from networking devices,
potentially creating issues related to network overload or delay in detection. The dawn of programmable data planes in
Software-Defined Networks can help mitigate this issue, opening the door to the detection of DDoS attacks directly in the data
plane of the switches. However, the most widely-adopted data plane programming language, namely P4, lacks supporting
many arithmetic operations, therefore, some of the advanced network monitoring functionalities needed for DDoS detection
cannot be straightforwardly implemented in P4. This work overcomes such a limitation and presents two novel strategies for
flow cardinality and for normalized network traffic entropy estimation that only use P4-supported operations and guarantee a
low relative error. Additionally, based on these contributions, we propose a DDoS detection strategy relying on variations of
the normalized network traffic entropy. Results show that it has comparable or higher detection accuracy than state-of-the-art
solutions, yet being simpler and entirely executed in the data plane.
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1 INTRODUCTION

D ISTRIBUTED Denial-of-Service (DDoS) attacks are becoming one of the most significant threats for network operators
and their customers as such attacks, carried out by many different compromised hosts, are able to flood a victim with

a huge load of superfluous traffic and exhaust its network and computational resources, causing service disruptions. In
this context, detecting DDoS attacks in a smooth yet effective way plays a key role in today’s network security. Periodical
monitoring of specific network metrics has been widely adopted as a strategy to detect DDoS attacks. For instance, network
traffic entropy is a statistical measure to describe the flow distribution, and the entropy of distinct destination IPs observed
in the network significantly decreases during a DDoS attack [2][3][4]. Moreover, a significant increase in the number of
source IPs contacting a specific destination IP [5][6][7] may also indicate that a DDoS attack is taking place.

From a technological perspective, both in SNMP-based [8] networks and in more recent Openflow-based [9] Software-
Defined Networks (SDNs), monitoring data collection and, consequently, DDoS detection are carried out by a logically
centralized component (generally known as monitoring collector or, more widely, controller): this requires the transmission,
storage, and processing of a large amount of information related to the network state from network devices to this
component [10]. Such an approach comes with two well-known drawbacks [11]: (i) a significant communication overhead
is generated between data and centralized monitoring/control planes and (ii) significant processing capabilities are needed
by the collector, with the risk of affecting the performance of monitoring and network operations if involved parties are
not well-dimensioned.

The recent advent of so-called (data-plane) programmable switches allows network operators to partially overcome such
drawbacks. In fact, programmable switches can, if appropriately programmed, execute part of the network monitoring/se-
curity operations directly in their data plane pipeline and deliver to the centralized monitoring/control plane information
that is partially or fully processed. However, data-plane programming comes with some inherent limitations: the most
well-established and widely-adopted data-plane programming language, called P4 [12], does not natively support basic
yet relevant arithmetic operations such as division, logarithm and exponential function calculation, as well as any operation
on floating numbers or for loops. Unfortunately, all these operations are needed to effectively implement an entropy-based
DDoS detection strategy that (i) is able to evaluate abnormal variations on the entropy over time and (ii) can be fully
executed in the programmable data plane, that is, it operates within the data plane pipeline and forwards alarms to the
monitoring collector to notify about potential DDoS attacks.
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Bruno Kessler, Trento, Italy. E-mail: dsiracusa@fbk.eu.A preliminary version of this paper appeared in [1], presented at IEEE/IFIP NOMS in 2020. The research
leading to these results has received funding from the EC within the H2020 Research and Innovation program, Grant Agreement No. 856726 (GN4-3 project).
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However, spotting variations of entropy over time, as done in previous works, may not be the most effective way to
detect DDoS attacks. In fact, the number of distinct flows in the network (i.e., flow cardinality) changes dynamically, affecting,
in turn, the value of traffic entropy. A more suitable metric is therefore the normalized entropy, which is normalized against
flow cardinality and is more robust to legitimate changes on the number of distinct flows.

The goal of this paper is thus to propose novel strategies to estimate network traffic statistics such as normalized
entropy and flow cardinality directly in P4 programmable switches, with the final goal of using them as building blocks
to accurately and timely detect DDoS attacks. To this aim, based on P4-based solutions for the estimation of logarithm
(P4Log) and exponential function (P4Exp) that we proposed in a preliminary version of this work [1], we here propose
P4LogLog, a novel memory-efficient strategy that takes inspiration from LogLog algorithm [13] for the estimation of flow
cardinality in P4. We then present P4NEntropy, our strategy for normalized Shannon entropy [14] estimation in P4, and
P4DDoS, our approach for DDoS detection based on P4NEntropy. Even though we designed and implemented P4LogLog
and P4NEntropy in support to P4DDoS, they can be seen as two stand-alone strategies paving the way towards the
development of new monitoring capabilities in programmable data planes. The prototypes of P4LogLog, P4NEntropy and
P4DDoS have been implemented with the P4 behavioral model [15] and proved to be fully executable in a P4 emulated
environment.

We then evaluate P4LogLog, P4NEntropy and P4DDoS by means of simulations to show their effectiveness and their
sensitivity to different tuning parameters, with three critical improvements (to the best of our knowledge) with respect to
the literature:
• P4LogLog can guarantee better accuracy than a widely-adopted state-of-the-art flow cardinality estimator [16] while

ensuring small memory usage.
• P4NEntropy ensures a comparable relative error in entropy estimation to a P4-based state-of-the-art solution [17], but

it avoids the usage of pre-computed values stored in the Ternary Content-Addressable Memory (TCAM) and adopts
a time-interval-based window instead of a packet-based one, which eases the switches’ synchronization if additional
network-wide operations should be executed.

• P4DDoS ensures slightly better performance than an existing P4-enabled entropy-based DDoS detection solution [17]. In
case of some stealthy DDoS attacks, such as an internal botnet DDoS attack or a DDoS attack with spoofed source IPs,
our P4DDoS outperforms the state-of-the-art solution in terms of detection accuracy. Moreover, our P4DDoS does not
need any interaction with the control plane in executing the foreseen operations, whereas [17] requires that a controller
properly populates the TCAM of the switch with some pre-computed values. This is why we claim that our strategy works
entirely in the data plane.

The remainder of the paper is organized as follows. In Section 2 we report background notions. Section 3 motivates why
we choose P4Log and P4Exp (see [1]) as building blocks for P4LogLog and P4NEntropy. Section 4 describes P4LogLog and
P4NEntropy, while Section 5 describes P4DDoS. Sections 6 and 7 present evaluation results and comparisons with existing
solutions. In Section 8 we recall the related work. Finally, Section 9 concludes the paper and discusses the future work.

2 BACKGROUND

In this section we recall background concepts needed to understand the strategies proposed in the following sections.

2.1 Normalized network traffic entropy
Network traffic entropy [18] gives an indication on traffic distribution across the network. Each network switch can evaluate
the traffic entropy related to the network flows that cross it in a given time interval Tint. Relying on the definition of Shannon
entropy [14], network traffic entropy can be defined as H = −

∑n
i=1

fi
|S|tot logd

fi
|S|tot , where fi is the packet count of the

incoming flow with flow key i (e.g. 5 tuple, source IP-destination IP pair, etc.), |S|tot is the total number of processed packets
by the switch during Tint, n is the overall number of distinct flows and d is the base of logarithm. Traffic entropy is H = 0
when in Tint all packets |S|tot belong to the same flow i, while it assumes its maximum value H = logd n when packets
are uniformly distributed among the n flows. The normalized entropy is defined as Hnorm = H

logd(n)
(0 ≤ Hnorm ≤ 1).

2.2 Hamming weight computation
Hamming weight represents the number of non-zero values in a string. In a binary string, the Hamming weight indicates
the overall number of ones. For example, given the binary string 01101, the Hamming weight is 3. It can be computed by
means of different algorithms: as part of P4LogLog, in this paper we adopt the Counting 1-Bits algorithm presented in [19],
as it only relies on bitwise operations that are completely supported by the P4 language [20].

2.3 Sketch-based estimation of flow packet count
Estimating the number of packets for a specific flow crossing a programmable switch (fi) is fundamental for network
traffic entropy computation. Such an estimation can be performed by means of sketches [7], which are probabilistic data
structures associated to a set of pairwise-independent hash functions. The size of each sketch data structure depends on
the number of associated hash functions Nh and on the output size of each function Ns, and is Nh × Ns. Update and
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TABLE 1
P4 programs properties

Algorithm Parameter [1] Value [1] Instructions M+A entries

P4Log Ndigits 3 47 1
Nbits 4

P4Exp Nterms 7 64 1
M+A Log - - 0 1920
M+A Exp - - 0 2049

Forwarding - - 0 1
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Fig. 1. Cumulative distribution function of packet processing time

Query operations are used to store and retrieve information from the sketch: Update operation is responsible for updating
the sketch to keep track of flow packet counts, while Query operation retrieves the estimated number of packets for a
specific flow. Two well-known algorithms to Update and Query sketches are Count-min Sketch [21] and Count Sketch [22].
A detailed theoretical analysis on the accuracy/memory occupation trade-off for these sketching algorithms is reported
in [21][22]. From a high-level perspective, as any of Nh and Ns increase, memory consumption is larger but estimation
is more accurate. Count Sketch leads to a better accuracy/memory consumption trade-off than Count-min Sketch, but its
update time is twice slower [23].

2.4 LogLog algorithm for flow cardinality estimation
LogLog [13] is a sketch-based algorithm that can be adopted to estimate the number of distinct flows crossing a switch.
In brief, it works as follows. Given an incoming packet with flow key i, LogLog applies to i a hash function with output
size os: the resulted os-bit binary string s is denoted by s = {sos−1sos−2 · · · s0}. LogLog then updates an m-sized LogLog
register Reg. Let bucket be the rightmost k bits of s (with k = log2m) and x the remaining bits, i.e., bucket = {sk−1 · · · s0}
and x = {sos−1 · · · sk}. Reg is updated following this rule: Reg[bucket] = max(Reg[bucket], value), where value is the
index of the rightmost 1 of x plus one. Reg can then be queried to estimate the flow cardinality n̂, which is computed as n̂
= αmm2

1
m

∑m−1
bucket=0 Reg[bucket], where αm is a bias correction parameter. An interesting property of LogLog is that multiple

LogLog sketches can be merged to a single sketch, which can be used to count the flow cardinality of the union of many
packet streams.

3 COMPARISON OF LOG AND EXP ESTIMATION STRATEGIES IN PROGRAMMABLE DATA PLANES

Since P4 language does not support logarithm and exponential function computations, many advanced algorithms lever-
aging those operations (e.g., linear counting [24]) are not directly implementable using such domain-specific language.
However, these advanced algorithms are useful for executing many networking tasks in programmable data planes,
including flow cardinality estimation [25] and DDoS detection [17][26], so finding a way to support them is of paramount
importance. Sharma et al. [25] successfully implemented estimation of logarithm and exponential function in P4, but
their strategy requires the storage of appropriate pre-computed values in match-action (M+A) tables. The conference
version of this paper [1] proposes and evaluates the accuracy of two algorithms for exponential function and logarithm
estimation, called P4Exp and P4Log, which only rely on P4-supported arithmetic operations. P4Exp and P4Log algorithms
have comparable accuracy as [25] without the usage of any M+A table. However, a comparison of performance in terms of
packet processing time between P4Exp, P4Log and the corresponding state of the art strategies is missing in [1]. We believe
that such a comparison is important to understand how different approaches affect packet processing in the P4 pipeline,
and to take a decision on which exponential function and logarithm estimation algorithms we should leverage for the
design and implementation of P4LogLog, P4NEntropy, and P4DDoS.

We chose Mininet [27] as an emulated network environment with a single P4 switch. The data plane pipeline is described
by P4 code compiled using the bmv2 behavioral model [15]. We then connected the P4 switch to two hosts, ensuring that
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packets can be forwarded from one to the other. Virtual links bandwidth is bounded by CPU capacity. The emulated
environment is built on top of a virtual machine deployed by OpenStack on our local testbed with dedicated access to 4 ×
2.7GHz CPU cores and to 4GB of RAM. We used Wireshark [28] to capture a packet timestamp tin at the ingress interface
of the switch and the timestamp tout at the egress interface when the same packet is forwarded to the destination host. The
packet processing time is then calculated by tout − tin.

In addition to P4Exp and P4Log implementations, we implemented the logarithmic and exponential function estimation
strategies reported in [25], named here as M+A Log and M+A Exp, respectively. For 64-bit operands in P4, to ensure a
relative error below 1% for the estimated values with respect to the real ones, M+A Exp needs 2048 entries in an exact
match table, while M+A Log requires 1919 entries in a ternary match table (to be stored in TCAM). However, in behavioral
model [15], any M+A table can include at most 1024 entries, so we had to assign two exact match tables for M+A Exp
and two ternary match tables for M+A Log. A simpler benchmark strategy, named Forwarding, is also implemented: it
only requires a M+A table for forwarding the packets from source to destination host according to pre-defined flow rules.
All the other strategies implement the same forwarding logic in their pipeline. P4Log and P4Exp parameters are taken
from [1] and shown in Tab. 1. The table also summarizes the number of required instructions (i.e., logical and arithmetical
operations) and of M+A entries for all the considered strategies (including forwarding capabilities), showing the inherent
differences of the approaches.

We then evaluate the packet processing time, considering base-2 logarithm and exponential function. We generated and
forwarded 10000 packets: Fig. 1 shows the cumulative distribution function (CDF) of packet processing time. No packet
loss was experienced. As shown in Fig. 1(a), both P4Log and M+A Log cause a higher processing time than Forwarding
since they need to carry out more complex operations. However, their CDF curves are almost overlapped: this means that
P4Log does not cause any additional overhead on processing time with respect to M+A Log, but it has the benefits of not
requiring any M+A table. Likewise, Fig. 1(b) reveals that both exponential function estimation strategies slightly increase
the processing time with respect to Forwarding. P4Exp has just a slightly higher packet processing time than M+A Exp but,
also in this case, it does not require any M+A table to work. Note also that packets, in real high-performance programmable
switches, are expected to be processed in few hundreds of ns [29], thus such a difference in processing time would impact
even less on performance (in absolute terms).

We have shown that P4Log and P4Exp have comparable accuracy (see [1]) and efficiency as the state of the art, while
preventing from the usage of expensive and power-hungry switch memory (e.g. TCAM) for their execution: we thus chose
to leverage P4Log and P4Exp for all the logarithmic and exponential-function estimations needed in the following Sections.
P4Log and P4Exp can then be seen as two primitives, while the reader interested in their implementation should refer to
[1].

As a final remark, we want to remind that, according to [1], the output of P4Log(x) is log2 x� 10 (i.e., log2 x left-shifted
10 bits), while the the output of P4Exp(x) is 2x. 10-bit left-shifting operation � (i.e., multiplying by 210) is done in [1] to
”amplify” decimal numbers and maintain the information carried by their decimal part (which would be truncated by
P4 otherwise). 10-bit right-shifting � can be instead used to move back an amplified number to its original range. Note
that P4Exp can be used for the exponential function computation of any real positive number, while in the case of natural
numbers it is more efficient to exploit the left shift operator (i.e., 2x ← 1 � x for x integer positive). We will largely
leverage such properties and logical operations in the next sections of this paper.

4 ESTIMATION OF NORMALIZED TRAFFIC ENTROPY

Based on P4Log and P4Exp we initially propose P4LogLog to estimate flow cardinality. P4LogLog is then used by P4NEntropy,
which estimates the normalized network traffic entropy. The prototypes of both strategies have been implemented in P4
behavioral model [15] and are executable in an emulated environment as Mininet [27]. The P4 source codes are available
in [30] and [31].

4.1 Flow cardinality estimation: P4LogLog
In this section we propose P4LogLog for the estimation of flow cardinality. The problem is formulated as follows.

Problem definition: Given a stream S of incoming packets, each one belonging to a specific flow i, returns the estimated
flow cardinality n̂ of S, i.e., the estimated number of distinct flows in S.

For instance, if we identify as flow key i each packet destination IP, meaning that a flow includes all the packets towards
a specific destination, then the flow cardinality of destination IPs represents the number of destination IPs in the network.
Same consideration holds for any other flow definition (e.g. packets with the same 5-tuple, same source/destination IP pair,
etc.) without any loss of generality. In the following, we report the details of Update and Query operations of P4LogLog,
which both follow specifications from LogLog [13] (see Section 2.4) while only using P4-supported instructions.

4.1.1 Update
As shown in Algorithm 1, Update function iteratively updates a readable and writable stateful register Reg for each
incoming packet, which belongs to a flow with flow key i. The flow key i of the packet is hashed by a given hash function,
and the output value is converted to a os-bit binary string s (Line 6). In this paper, we consider os = 32 and an m-sized
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Algorithm 1: P4LogLog
Input: Packet stream S
Output: Flow cardinality estimation n̂

1 m← 2k (k ∈ {4, ..., 16})
2 os← 32
3 Reg← m-sized empty LogLog register
4 Function Update(Reg):
5 for Each received packet belonging to flow i do
6 s← (Hash(i)→ {0, 1}os)
7 bucket← s&(2k − 1)
8 x← (s� k)
9 w ← x|(x� 1)

10 for int l ∈ {1, · · · , log2(os)− 1} do
11 w ← w|(w � 2l)

12 b← HammingWeight(w)
13 value← os+ 1− b
14 if value > Reg[bucket] then
15 Reg[bucket]← value

16 return Reg

17 αm ← 0.39701� 10
18 Function Query(Reg):
19 exp← P4Exp((

∑m−1
bucket=0 Reg[bucket])� k)

20 n̂← (exp · αm ·m)� 10
21 return n̂

register Reg, where m = 2k and integer k ∈ {4, ..., 16} (as per [13]). The index of the register’s cell to be updated, named
bucket (0 ≤ bucket ≤ m − 1), is the binary number represented by the rightmost k bits of s, which can be obtained by
s&(2k − 1), i.e., s&0 11 · · · 1︸ ︷︷ ︸

k

(Line 7). & is the bitwise inclusive AND operator and 2k − 1 (in binary) is pre-stored in the P4

program once k is chosen. The algorithm then right-shifts s to k bits to get a binary string x where the first k bits are 0s
and the remaining os− k bits are the first os− k bits of s (Line 8). The index of rightmost 1 in x, called value, is then used
to update the LogLog register’s cell in bucket position. Unfortunately, retrieving such rightmost 1 is not trivial. As shown
from Lines 9 to 12, the algorithm adopts the following strategy: all bits of x on the left of the rightmost 1 are iteratively
converted to 1, and the result of this iterative operation is stored in w ( | is the bitwise inclusive OR operator). For example,
an os-bit binary value x = 00 · · · 01︸ ︷︷ ︸

os−1

0 is converted to w = 11 · · · 11︸ ︷︷ ︸
os−1

0. The algorithm for Hamming weight recalled in Section

2.2 is then used to count b, i.e., the number of 1s in x (Line 12): value is equal to os + 1 − b (Line 13). Finally, if value is
larger than the bucket-indexed value in the register, value replaces the stored value (Lines 14-15).

4.1.2 Query
Query function in Algorithm 1 estimates the flow cardinality directly in the switch. The flow cardinality estimation n̂ is
computed as in [13] and Section 2.4 from all LogLog register’s stored values by exploiting P4Exp. The k-bit right-shift
operation carried out on the sum of values from Reg is equivalent to dividing such sum by m = 2k (Line 19). The
floating parameter αm, chosen as in [13], is amplified 210 times through left shift operation, and the resulted value from
the computation executed in Line 20 is right-shifted 10 bits to get the estimated flow cardinality n̂.

4.2 Normalized traffic entropy estimation: P4NEntropy
In this section we present a new strategy, named P4NEntropy, to estimate the normalized network traffic entropy in a given
time interval using the P4 language. Formally, the problem is defined as follows.

Problem definition: Given a stream S of incoming packets, each one belonging to a specific flow i, and a time interval
Tint, returns the normalized Shannon entropy estimation Hnorm (see Section 2.1) at the end of Tint.

4.2.1 Derivation of estimated normalized entropy in P4
The goal of this section is to provide an estimation of network traffic normalized entropy by only using P4-supported
operations and reducing as much as possible their number. The section also shows how relevant statistics, used for
normalized entropy estimation at the end of Tint, are iteratively updated every time a packet crosses the switch.

We first rewrite the Shannon entropy as follows:

H(|S|tot) = −
n∑

i=1

fi(|S|tot)
|S|tot

logd

fi(|S|tot)
|S|tot

= logd |S|tot −
1

|S|tot

n∑
i=1

fi(|S|tot) logd fi(|S|tot)



6

We consider d = 2 without any loss of generality. With respect to the definition given in Section 2.1, we use the notation
fi(|S|tot) to make explicit that fi refers to its value when |S|tot packets have been received (i.e., at the end of Tint). As
packets arrive to the switch, the overall number of processed packets |S| increases and must be stored in the switch to ensure
that H(|S|tot) can be computed at the end of Tint, when |S| = |S|tot. We define Sum(|S|) =

∑n
i=1 fi(|S|) logd fi(|S|),

which must be updated as well. To understand how to update Sum(|S|), let’s assume that a new packet for a specific flow
arrives and it is the |S|-th packet. We call its packet count f̄i(|S|). It holds that:{

fi(|S|) = fi(|S| − 1) (fi(|S|) 6= f̄i(|S|))
fi(|S|) = fi(|S| − 1) + 1 (fi(|S|) = f̄i(|S|))

This allows us to re-write Sum(|S|) as follows:

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|) +

− (f̄i(|S|)− 1) log2(f̄i(|S|)− 1)

Sum(|S|) thus needs two logarithmic computations for each incoming packet, and would require running P4Log twice
with corresponding computational effort.

In the next step, we show how it is possible to estimate Sum(|S|) with only (at most) one logarithmic computation.
When f̄i(|S|) = 1, we estimate Sum(|S|) = Sum(|S| − 1), being f̄i(|S|) log2 f̄i(|S|) = 1 log2 1 = 0 and defining (f̄i(|S|)−
1) log2(f̄i(|S|)− 1) = 0 log2 0 = 0 [6]. Instead, when f̄i(|S|) > 1, we need to re-write once again Sum(|S|) in the following
way:

Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) +

+ (f̄i(|S|)− 1) log2(1 +
1

f̄i(|S|)− 1
)

According to L’Hopital’s rule [32]:

lim
f̄i(|S|)→+∞

(f̄i(|S| − 1) log2 (1 +
1

(f̄i(|S| − 1)
) =

1

ln2

Thus, we set 1/ln2 ≈ 1.44 as the approximation of the third term of Sum(|S|). This approximation best works when most
of the flows in Tint carry a number of packets much greater than 1 (as it usually happens in an ISP backbone network,
which is the most suitable scenario where to apply our strategy). Finally, Sum(|S|) can be estimated as:

Sum(|S|) ≈
{
Sum(|S| − 1) (f̄i(|S|) = 1)

Sum(|S| − 1) + log2 f̄i(|S|) + 1/ln2

(f̄i(|S|) > 1) (1)

This estimation requires at most one logarithm computation. Since P4 language does not support division, we re-write
1
|S|tot = 2− log2 |S|tot . So, entropy can be written as:

H(|S|tot) = log2 |S|tot − 2(log2 Sum(|S|tot)−log2 |S|tot)

In this form, entropy can be estimated by only using P4-supported operations, leveraging P4Log and P4Exp algorithms.
In the following we show how, in some cases, it is possible to further slightly reduce complexity in entropy estimation.
When |S|tot =

∑n
i=1 fi(|S|tot) > Sum(fi|Stot|), it holds that 0 < 2(log2 Sum(|S|tot)−log2 |S|tot) < 1. This is a corner case that

happens only when flow distribution is almost uniform (i.e., when most of flows carry only one or very few packets). In
this case, we neglect the computation of 2(log2 Sum(|S|tot)−log2 |S|tot), meaning that we estimate entropy as flow distribution
was perfectly uniform. Network traffic entropy can then be estimated as follows:

H(|S|tot) ≈
{

log2(|S|tot) (|S|tot > Sum(|S|tot))
log2(|S|tot)− 2(log2 Sum(|S|tot)−log2 |S|tot)

(|S|tot ≤ Sum(|S|tot)) (2)

Finally, normalized entropy Hnorm(|S|tot) is estimated as:

Hnorm(|S|tot) = 2log2(H(|S|tot))−log2(log2 n̂) (3)

The number of estimated distinct flows n̂ can be obtained using P4LogLog, that is, by updating a LogLog register for each
incoming packet and by querying it at the end of Tint.

4.2.2 Description of P4NEntropy strategy
Figure 2 and Algorithm 2 show the scheme and pseudocode of P4NEntropy algorithm, leveraging outcomes from Sections
4.1 and 4.2.1. First, the algorithm continuously updates Sum(|S|) until the end of Tint (UpdateSum function) with flow
information from incoming packets. A counter |S| is used to count all incoming packets in the switch. Note that we
consider as flow key the destination IP of the packet, with i ∼ dstIPi. A sketch data structure (e.g., Count Sketch or Count-
min Sketch, see Section 2.3) is used to store the estimated packet count for all the flows, being continuously updated to
include information from new packets, and then it is queried to retrieve the estimated packet count f̄i(|S|) for the flow
i the current incoming packet belongs to. This value is then passed to a register named Sum(|S|), which is updated as
specified in Eq. 1. All the floating numbers in the equation must be amplified 210 times, since P4Log outputs an amplified
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Packet
stream S

Update
counter
|S|

P4LogLog(S)

At the end of Tint
(|S| = |S|tot)

dstIPi

dstIPi

Update / Query Sketch

Update
Sum(|S|)

(Eq. 1)

f̄i(|S|)

Estimate Entropy H(|S|tot) (Eq. 2)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

Estimate Norm. Entropy
Hnorm(|S|tot) (Eq. 3)

At the end of Tint
(n̂dst)

Fig. 2. Scheme of P4NEntropy

Algorithm 2: P4NEntropy
Input: Packet stream S, time interval Tint

Output: Normalized entropy estimation Hnorm(|S|tot) of S in Tint

1 |S| ← 0, Sum(|S|)← 0
2 Function UpdateSum(Sum(|S|)):
3 while currentTime < Tint do
4 for Each received packet belonging to flow i do
5 |S| ← |S|+ 1
6 f̄i(|S|)← Sketch(dstIP i)
7 if f̄i(|S|) > 1 then
8 Sum(|S|)� 10← Sum(|S|)� 10
9 +P4Log(f̄i(|S|)) + 1.44� 10

10 Sum(|S|tot)← (Sum(|Stot|)� 10)� 10
11 return Sum(|S|tot), |S|tot
12 Function EstimateNormEntropy(Sum(|S|tot), |S|tot):
13 if currentTime = Tint then
14 if |S|tot > Sum(|S|tot) then
15 H(|S|tot)� 10← P4Log(|S|tot)
16 else
17 diff← P4Log(Sum(|S|tot))− P4Log(|S|tot)
18 H(|S|tot)�10←P4Log(|S|tot)− P4Exp(2,diff)

19 n̂dst ← P4LogLog(S, Tint)
20 diffn ← P4Log(H(|S|tot)� 10)+
21 −(P4Log(P4Log(n̂dst))− 10� 10)
22 if diffn > 0 then
23 Hnorm(|S|tot)� 10← P4Exp(2,diffn)

24 else
25 Hnorm(|S|tot)� 10← 0

26 return Hnorm(|S|tot)� 10

integer value. Only at the end of Tint, Sum(|S|tot) is reduced by a factor of 210 and its final value, together with |S|tot, is
returned (Lines 1-11 of the pseudocode). Traffic entropy is then estimated as specified in Eq. 2 (Lines 13-18). The resulted
value of H(|S|tot) is amplified 210 times since output values of P4Log are amplified, while output values of P4Exp are
not. Such an amplification makes it possible to use P4Exp in Eq. 3 to estimate Hnorm(|S|tot) amplified 210 times. Note
that H(|S|tot) � 10 may be smaller than log2(n̂dst) but, in this case, the normalized network traffic entropy can be
approximated to 0 (Line 25). Since the result of P4Log is left-shifted 10 bits, the computation of log2(log2(n̂dst)) must be
carefully handled. Considering that the result of P4Log(n̂dst) is log2(n̂dst)� 10, the output of P4Log(log2(n̂dst)� 10) can
be expressed as log2(log2(n̂dst) � 10) � 10 = log2(log2(n̂dst) · 210) � 10 = log2(log2(n̂dst)) � 10 + 10 � 10. Hence,
log2(log2(n̂dst))� 10 is equivalent to P4Log(P4Log(n̂dst)) −10� 10 (Line 21). The resulting value is used to compute the
normalized network traffic entropy amplified 210 times (Line 23).

5 ENTROPY-BASED DDOS DETECTION

Based on P4NEntropy, we present a simple yet effective entropy-based DDoS detection strategy in P4, named P4DDoS. The
P4 code of P4DDoS is available in [33]. Formally, the problem is defined as follows.

Problem definition: Given a k-th time interval T k
int, a stream Sk of incoming packets during T k

int, the estimated
normalized network traffic entropy of destination IPs Hk

norm at the end of T k
int and an adaptive threshold λknorm, returns

an alarm to the controller, at the end of T k
int, if a potential DDoS attack is identified.
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dstIPi Hk
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NO
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Fig. 3. Scheme of P4DDoS

Our proposed strategy triggers an alarm (e.g. a flag embedded in a field of the report packet header) if Hk
norm < λknorm.

In fact, as empirically evaluated in previous works (e.g. [34][35]), when a DDoS attack occurs, the normalized network
traffic entropy of destination IPs significantly decreases, since traffic is concentrated around few destination nodes. The
most critical aspect for such an entropy-based strategy is how to set the threshold λknorm. This will be discussed in the
next subsection. Note also that we only focus on volumetric DDoS attacks (e.g. UDP flooding or DNS amplification attacks);
considering other types of attacks, such as link flooding or carpet bombing, is left as future work.

5.1 Adaptive threshold setting
Since network traffic fluctuates over time, we define an adaptive threshold to protect our strategy from false positives that
may be generated if using a fixed-value threshold in such a dynamic environment. Our proposed adaptive threshold
leverages the computation of an Exponentially Weighted Moving Average (EWMA) of Hk

norm across different time intervals.
The moving average EWMAk

norm in time interval T k
int is expressed as:

EWMAk
norm =

{
Hk

norm (k = 1)

αHk
norm + (1− α)EWMAk−1

norm(k > 1)

where α (0 < α < 1) is the smoothing factor for EWMAk
norm. We define a threshold parameter ε (0 ≤ ε ≤ 1), used

to compute the threshold λk+1
norm in the next time interval T k+1

int if no alarm is generated in T k
int:

λk+1
norm =

{
EWMAk

norm − ε (no alarm in T k
int)

λk
norm (alarm in T k

int)

As shown above, the threshold λk+1
norm is not updated if an alarm is generated in the time interval: this ensures that the

threshold is updated when only legitimate traffic crosses the switch and its value is not biased by DDoS traffic. Note that
setting the parameter ε in a proper way is also fundamental to get good DDoS detection performance. This aspect will be
evaluated in Section 7.

5.2 Implementation in P4 language
Figure 3 and Algorithm 3 report the scheme and pseudocode of the P4DDoS strategy, with focus on a given time interval
T k
int. At the end of time interval T k

int, the DDoSDetection function is executed. Alarmk
ddos is set to 0 and the normalized

network traffic entropy Hk
norm is estimated by P4NEntropy, amplified 210 times (Lines 2-3). It is then compared to the

threshold λknorm � 10 (Line 4). If smaller, the alarm Alarmk
ddos is set to 1 and the UpdateThreshold function is called (Lines

5-7). Otherwise, the UpdateThreshold function is called without changing Alarmk
ddos (Lines 9-10). If Alarmk

ddos = 1, the
switch clones the current packet and embeds the value 1 in a customized header field. This report packet is then sent to the
controller to report that a potential DDoS attack has been detected. It is possible to embed more information in the header
of the report packet, such as the estimated network traffic entropy. In this case, the controller is able to take a network-wide
decision using the entropy retrieved from multiple switches (see Section 5.3.1) about whether the potential DDoS attack is
an actual attack.

The UpdateThreshold function updates EMWA and the adaptive threshold as specified in Section 5.1. (Lines 12-23). Note
that, since both EMWA and the threshold λnorm are usually decimal numbers, all the operations are executed to ensure
that their value is amplified 210 times.

5.3 Insights and discussions
5.3.1 Network-wide coordination
So far, we have focused on entropy-based DDoS detection in a single programmable switch. The switch can generate
alarms if, according to the traffic flowing through its interfaces, a DDoS attack may be occurring. However, given the
reduced network visibility of a single switch, a final decision on whether a DDoS attack is actually carried out should
be taken by the centralized controller from a network-wide perspective, that is, by cross-checking collected information
from multiple switches and taking a global decision. For instance, UnivMon [6] and Elastic Sketch [16] present a way to
estimate network-wide traffic entropy: the idea behind those works is to sample a set of flows with large packet count in any
programmable switch, and send such statistics to the controller at the end of any time interval. The controller estimates the
entropy of reported sampled ”heavy” flows and considers it as a network-wide entropy estimation. As reported in [36], these
two approaches assume that packets for a specific flow are counted only once in the network. By making the same strong
assumption, in our case network-wide traffic entropy Hnw can be expressed as:
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Algorithm 3: P4DDoS

Input: Packet stream Sk, time interval T k
int, threshold parameter ε, smoothing factor α, threshold λk

norm � 10 and average
EWMAk−1

norm � 10 computed in T k−1
int

Output: DDoS alarm Alarmk
ddos = 1 if a DDoS attack is detected in T k

int

1 Function DDoSDetection(λk
norm � 10):

2 Hk
norm � 10← P4NEntropy(Sk, T

k
int)

3 Alarmk
ddos ← 0

4 if Hk
norm � 10 < λk

norm � 10 then
5 Alarmk

ddos ← 1
6 UpdateThreshold(k, α,Hk

norm � 10, ε, Alarmk
ddos,

7 EWMAk−1
norm � 10, λk

norm � 10)

8 else
9 UpdateThreshold(k, α,Hk

norm � 10, ε, Alarmk
ddos,

10 EWMAk−1
norm � 10, λk

norm � 10)

11 return Alarmk
ddos

12 Function UpdateThreshold(k, α,Hk
norm � 10, ε,

13 Alarmk
ddos, EWMAk−1

norm � 10, λk
norm � 10):

14 if Alarmk
ddos = 0 then

15 if k = 1 then
16 EWMAk

norm � 10← Hk
norm � 10

17 else
18 EWMAk

norm�10← ((α� 10) ·Hk
norm� 10

19 +((1− α)� 10) · EWMAk−1
norm � 10)� 10

20 λk+1
norm � 10← EWMAk

norm � 10− ε� 10

21 else
22 λk+1

norm � 10← λk
norm � 10

23 return λk+1
norm � 10, EWMAk

norm � 10

Hnw = log2(

w∑
j=1

|Sj |tot)−
1∑w

j=1 |Sj |tot
(

w∑
j=1

Sumj)

where w is the number of switches in the network and Sumj =
∑nj

i=1 fi(|Sj |tot) logd fi(|Sj |tot) (see Section 4.2.1).
Additionally, according to the union property of LogLog (see section 2.4), the normalized network-wide traffic entropy
Hnw

norm can be expressed as:

Hnw
norm =

Hnw

log2(LogLog(S1 ∪ S2 ∪ · · ·Sw))

In this latter case, the strong assumption above can be neglected, since the union property of LogLog makes it possible
to estimate the network-wide number of distinct flows also if a packet is counted in different locations.

Given the above considerations, a network-wide strategy could be designed to forward to the controller all the needed
information from the switches (i.e., |Sj |tot, Sumj and the j-th LogLog register) for the computation of network-wide
normalized entropy in support to a centralized network-wide DDoS detection. However, since in real scenarios the packet
may traverse multiple switches and generate duplicated packet counts, the accuracy of the computed network-wide entropy
Nnw would be compromised. How to overcome this issue is still open: we will work on refined strategies for network-wide
entropy-based DDoS detection in the future.

5.3.2 Implementation in a programmable hardware switch
We tried to implement P4DDoS in a P4-programmable hardware switch with Tofino Application-Specific Integrated Circuit
[37]. Due to limited hardware resources, we could not fully implement it. However, hardware vendors are currently
launching more and more powerful P4-programmable switches, so we are pretty confident that in the future it will be
possible to execute P4DDoS in hardware targets, while ensuring a line-rate packet processing speed with only a few-
hundreds of nanoseconds packet processing latency, as already possible for simpler strategies [29].

6 P4LOGLOG AND P4NENTROPY EVALUATION

We implemented P4LogLog and P4NEntropy in Python and simulated them for evaluation.
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Fig. 4. Performance comparison of P4LogLog with an existing flow cardinality estimation approach [5]

6.1 Evaluation metrics and simulation settings
6.1.1 Testing flow trace and methodology
P4LogLog: We use 2018-passive CAIDA flow trace [38], including 50 seconds of network traffic, and divide it into 50
1-second time intervals (or observation windows). In each considered time interval there are around 460K packets.
P4NEntropy: We use the same CAIDA flow trace but divide it into 10 observation windows of roughly 5 seconds each,
every one including a fixed number of 221 packets. Fixing the number of packets per observation window is needed to
compare our approach with a state-of-the-art solution [17], named SOTA entropy for the remainder of the section, which
adopts M+A tables to store pre-computed values and only works with windows with power-of-two number of packets.

6.1.2 Evaluated metrics
We consider relative error as an evaluation metric.
P4LogLog: Being n the exact number of distinct flows (either identified by source IP or destination IP as flow key) in a time
interval and n̂ its estimated value, the relative error is defined as the average value of |n−n̂|n · 100% in all the consecutive
50 time intervals.
P4NEntropy: We call Ĥ the estimated traffic entropy of destination IPs in an observation window and H its exact value.

The relative error is defined the average value of |H−Ĥ|H · 100% in the 10 consecutive observation windows. Note that we
evaluate the entropy H and not its normalized value Hnorm: this is needed to make a fair comparison with SOTA entropy,
which does not consider any entropy normalization. To understand how normalization affects the accuracy of the estimated
entropy, the reader should refer to the evaluation of P4LogLog (Section 6.2).

6.1.3 Tuning parameters
The default tuning parameters for P4Log and P4Exp, adopted for both P4LogLog and P4NEntropy, are set as in Tab. 1. The
sketch (either Count-min or Count Sketch) used by P4NEntropy has default size (Nh = 5) × (Ns = 2000).

6.2 Evaluation of P4LogLog
As shown in Fig. 4, we compare our P4LogLog with another existing flow cardinality estimator (Linear counting [5]),
implementable in a programmable data plane, in terms of relative error. 1 bit is used for each Linear counting register cell
[39], while 5 bits are allocated for each P4LogLog register cell [13]. Given this, we vary the memory size of each register for
both the approaches (i.e., we vary the number of cells in the registers, which can be easily retrieved).

Figure 4(a) focuses on the estimation of distinct source IPs in the trace. The relative error on such a flow cardinality
estimation by adopting Linear counting is 50% higher than by adopting P4LogLog when the memory size is below 320
bytes, and its value for Linear counting is high for any memory size below 640 bytes. Conversely, our P4LogLog leads
to acceptable relative errors with only 80 bytes. If we assign 1280-bytes registers to P4LogLog and Linear counting, the
relative error of both is around 1%. Likewise, Fig. 4(b) shows the estimated number of distinct destination IPs in the trace.
Our P4LogLog algorithm still outperforms Linear counting for small memory sizes. When the memory occupation reaches
640 bytes, the relative error of P4LogLog is below 3%, which is assumed as an acceptable target.

Another solution for flow cardinality estimation is proposed in [6]. However, such a solution always needs much more
memory than Linear Counting and P4LogLog (i.e., at least 0.2MB) to get reasonable accuracy.

6.3 Evaluation of P4NEntropy
We simulate both our strategy and SOTA entropy in the case that the packet count of each flow (identified by destination
IP flow key) is estimated in the data plane by adopting either Count-min Sketch or Count Sketch (see Section 2.3 and Fig.
2).

We show how entropy estimation of destination IPs is affected while changing the size Nh ×Ns of the sketch (Fig. 5).
Fig. 5(a) shows the relative error in entropy estimation for the two strategies when Ns is fixed and Nh varies. It shows
that the relative error slightly decreases as Nh increases in all the cases. Moreover, P4NEntropy and SOTA entropy lead to
similar relative error. It can be noted that, when adopting Count-min Sketch, both P4NEntropy and SOTA entropy have
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Fig. 5. Performance comparison of P4NEntropy with an existing entropy estimation approach [17] (flow key: destination IP)

larger relative error (always above 4%) than when adopting Count-Sketch. Additionally, in this case, the relative error
of SOTA entropy is slightly higher than the one of P4NEntropy, which is caused by the different ways how Sum(fi) is
estimated. In SOTA entropy, the Longest Prefix Match (LPM) lookup table for F (fi) = fi log2 fi− (fi− 1) log2(fi− 1) (see
[17]) is sensitive to the large packet count (fi) overestimation caused by Count-min Sketch. Conversely, P4NEntropy needs
to calculate log2 fi + 1

ln 2 (see Eq. 1), which is less sensitive to large overestimations (i) due to the logarithm nature and (ii)
because 1

ln 2 is a constant value. This effect does not happen when Count-Sketch is adopted, since overestimations are much
less frequent. In that case, P4NEntropy leads to slightly worse results than SOTA entropy because, unlike SOTA entropy,
it uses an approximation for the computation of entropy (see Eq. 2).

Fig. 5(b) shows instead the impact of a variation of Ns on relative error in entropy estimation. Results are similar to
what shown in Fig. 5(a), but it can be noted that both strategies are more sensitive to a variation of Ns than of Nh. In this
case, when adopting Count Sketch, relative error is always close to 3%. Note that a relative error of 3% is the maximum
possible value ensuring that accuracy of practical monitoring applications is not affected [18].

7 P4DDOS EVALUATION

We implemented P4DDoS in Python and simulated it for evaluation. Additionally, we also implemented a state-of-the-art
entropy-based DDoS detection approach [17] executable in programmable switches, named SOTA DDoS for the sake of
brevity, and compared them. To make a fair comparison, both DDoS detection strategies have been implemented leveraging
our proposed P4NEntropy strategy and using a sketch, for packet count estimation, of the same size. Note, however, that
the original version of SOTA DDoS uses SOTA Entropy for entropy estimation (see the previous subsection). Unlike
P4DDoS, which triggers a DDoS alarm only when the normalized entropy of destination IPs decreses below a threshold,
SOTA DDoS triggers a DDoS alarm when any of two conditions holds: (i) entropy (not normalized) of source IPs increases
above an adaptive threshold and (ii) entropy (not normalized) of destination IPs decreases below an adaptive threshold.

7.1 Evaluation metrics and simulation settings
7.1.1 Testing flow trace and methodology
We consider three kinds of flow traces.
Trace1. Legitimate flow trace: The same CAIDA flow trace [38] that we used for the evaluation of P4LogLog. The 50-
seconds flow trace is divided into 50 1-second time intervals.
Trace2. Legitimate flow trace mixed with Booter DDoS attack traffic [40]: 50-seconds traces taken from a set of Booter
DDoS attack traces, and split into 50 time intervals. Each 1-second attack trace is injected into the legitimate 50-seconds
flow trace according to its sequential 1-second time intervals. We took four different packet-rate Booter DDoS attack traces
into consideration: Tab. 2 reports their properties and names as specified in [40]. We considered the four traces with the
highest number of attack source IPs: this allows us to analyze DDoS attacks with different volumes. Moreover, we also
injected all four Booter DDoS attack traces together into the legitimate flow trace: we name this trace as Mixed. Such a
mixed DDoS attack flow trace can help us evaluate the performance of DDoS detection when multiple DDoS attacks occur
simultaneously in the network.
Trace3. Legitimate flow trace mixed with internal Botnet DDoS attack traffic: In this case, we assume that some internal
hosts of the network (e.g., a datacenter network) are exploited by an attacker to reverse malicious traffic towards a DDoS
victim within the same network. We varied the attack traffic proportion (i.e., the percentage of generated malicious traffic
over the total traffic in the network) from 5% to 30%. This flow trace is generated by crafting Trace 1 in such a way that
part of the traffic is forwarded to one specific DDoS victim (by changing the destination IP of a given proportion of the
packets).
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TABLE 2
Properties of DDoS flow traces [40]

DDoS trace name Packet per second Attack source IPs
Booter 6 ∼ 90000 7379
Booter 7 ∼ 41000 6075
Booter 1 ∼ 96000 4486
Booter 4 ∼ 80000 2970

TABLE 3
Comparison of P4DDoS detection performance with a state-of-the-art approach [17] (Booter DDoS attacks)

Algorithm False-positive
rate Dfp

True-positive rate Dtp / Detection accuracy Dacc

Booter 6 Booter 7 Booter 1 Booter 4 Mixed
P4DDoS 8% 100% / 96% 82% / 87% 96% / 94% 98% / 95% 100% / 96%

SOTA DDoS
(k=5.5) 6% 96% / 95% 32% / 63% 62% / 78% 70% / 82% 100% / 97%

SOTA DDoS
(k=4.5) 8% 100% / 96% 38% / 65% 82% / 87% 78% / 85% 100% / 96%

SOTA DDoS
(k=3.5) 10% 100% / 95% 74% / 82% 100% / 95% 94% / 92% 100% / 95%

SOTA DDoS
(k=2.5) 20% 100% / 90% 94% / 87% 100% / 90% 100% / 90% 100% / 90%

SOTA DDoS
(k=1.5) 38% 100% / 81% 100% / 81% 100% / 81% 100% / 81% 100% / 81%

SOTA DDoS
(k=0.5) 60% 100% / 70% 100% / 70% 100% / 70% 100% / 70% 100% / 70%

7.1.2 Evaluation metrics
We consider true-positive rate Dtp, false-positive rate Dfp and detection accuracy Dacc as evaluation metrics. Considering that
(i) True Positive (TP) is the number of time intervals with a triggered DDoS alarm while a DDoS attack is occurring in those
intervals, (ii) True Negative (TN) is the number of time intervals without any triggered DDoS alarm while no DDoS attack
is occurring, (iii) False Positive (FP) is the number of time intervals with a triggered DDoS alarm while no DDoS attack is
occurring, and (iv) False Negative (FN) is the number of time intervals without any triggered DDoS alarm while a DDoS
attack is instead occurring, the metrics introduced above are defined as:

Dtp =
TP

TP + FN
× 100%

Dfp =
FP

TN + FP
× 100%

Dacc =
TP + TN

TP + TN + FP + FN
× 100%

7.1.3 Tuning parameters
The smoothing factor in EWMAnorm and for the thresholds defined in SOTA DDoS is set to α = 0.13: with this value, all
the previous computed averages (up to all the 50 time intervals) have some impact on EWMA. All the parameters for P4Log
and P4Exp are the ones reported in Tab. 1. We choose Count Sketch as sketch for P4NEntropy, with (Nh = 5)×(Ns = 2000).
The register size in P4LogLog is set tom = 2048, which corresponds to 1280 Bytes of memory. The considered time intervals
Tint, as already said, are 1-second wide. With longer Tint, Nh and Ns should be properly increased to ensure good entropy
estimation accuracy. Finally, the normalized entropy parameter is set to ε = 0.01 unless otherwise specified.

7.2 Detection performance (Booter DDoS attacks)
In this subsection, we evaluate our P4DDoS strategy against the state-of-the-art approach SOTA DDoS in terms of Dtp,
Dfp and Dacc in the case of Booter DDoS attacks. We also perform a sensitivity analysis of P4DDoS against the parameter
ε, showing how the detection performance is affected by changing its value. The testing flow trace is composed by the
concatenation of Trace1 and Trace2: we first run 50-seconds legitimate flow trace (Trace 1) so that adaptive thresholds on
entropy, for both strategies, are properly set in a legitimate traffic scenario. This trace allows us to evaluate Dfp. Then, Trace
2 including different packet-rate DDoS attacks (also mixed), is used to evaluate Dtp and, together with results obtained in
Trace 1, Dacc.

7.2.1 Comparison with the state of the art
To fairly compare P4DDoS with SOTA DDoS, we tuned the sensitivity coefficient k of SOTA DDoS (see [17]) to different
values: lower k leads to higher true-positive rate but also higher false-positive rate. Evaluation results are reported in
Tab. 3. In the first 50 time intervals, four false alarms are detected by P4DDoS, being thus the false-positive rate 8%.
As said, the false-positive rate of SOTA DDoS increases as k decreases. False-positive rate of P4DDoS is slightly higher
than of SOTA DDoS only when k = 5.5 but, in that case, P4DDoS outperforms SOTA DDoS on both true-positive rate
and detection accuracy for all the considered Booter attacks. The best trade-off between all the metrics for SOTA DDoS
is obtained with k = 3.5. In this case, P4DDoS and SOTA DDoS have comparable performance (with slightly better
performance for P4DDoS). This means that, in this scenario, comparing the normalized entropy of destination IPs against a
well-defined threshold is enough to get good performance on DDoS detection and that an evaluation of entropy of source
IPs can be avoided (that is, same performance can be obtained with a simpler strategy).
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Fig. 6. Sensitivity analysis of P4DDoS to parameter ε

TABLE 4
Comparison of P4DDoS detection performance with a state-of-the-art approach [17] for different Botnet DDoS attack traffic proportions (ATPs)

Algorithm False positive
rate Dfp

True-positive rate Dtp / Detection accuracy Dacc

ATP: 5% ATP: 10% ATP: 15% ATP: 20% ATP: 25% ATP: 30%
P4DDoS 8% 36% / 64% 92% / 92% 100% / 96% 100% / 96% 100% / 96% 100% / 96%

SOTA DDoS
(k=5.5) 6% 0% / 47% 12% / 53% 68% / 81% 100% / 97% 100% / 97% 100% / 97%

SOTA DDoS
(k=4.5) 8% 0% / 46% 40% / 66% 96% / 94% 100% / 96% 100% / 96% 100% / 96%

SOTA DDoS
(k=3.5) 10% 10% / 50% 50% / 70% 100% / 95% 100% / 95% 100% / 95% 100% / 95%

SOTA DDoS
(k=2.5) 20% 20% / 50% 88% / 84% 100% / 90% 100% / 90% 100% / 90% 100% / 90%

SOTA DDoS
(k=1.5) 38% 82% / 72% 94% / 78% 100% / 81% 100% / 81% 100% / 81% 100% / 81%

SOTA DDoS
(k=0.5) 60% 96% / 68% 100% / 70% 100% / 70% 100% / 70% 100% / 70% 100% / 70%

7.2.2 Sensitivity analysis
Figure 6 reports the sensitivity of P4DDoS to normalized network traffic entropy parameter ε. Figure 6(a) shows that
false-positive rate decreases as ε is smaller and stabilizes to zero once ε is larger than 0.04. This is because larger ε results
in a smaller threshold, being more DDoS alarms triggered also when DDoS attacks are not occurring. False positives only
happen for the legitimate traffic, reason why only one curve is reported. Figure 6(b) reveals the behavior of true-positive
rate when ε varies, showing that in general true-positive rate decreases as ε increases. Figure 6(c) shows the impact of ε on
detection accuracy. The shown curves, apart from the Mixed case, have a maximum at around ε = 0.01: we then decided
to set ε to this value, since it leads to the best trade-off considering all the three metrics.

7.3 Detection performance (Botnet DDoS attacks)
Table 4 shows a comparison on DDoS detection performance in case of internal Botnet DDoS attacks. The same method-
ology as described in Section 7.2 is adopted to prepare the testing flow trace but, in this case, Trace1 and Trace3 are
concatenated. In this attack scenario, the cardinality of source IPs in the network does not change and the attack traffic
proportion in Trace 3 is varied from 5% to 30%. Intuitively, the detection accuracy of P4DDoS increases as the attack
traffic proportion increases. When the attack traffic rate is low, i.e., 5%, the true-positive rate of P4DDoS is 36%. This
is the drawback of most normalized entropy-based DDoS detection strategies: they struggle to detect low-packet-rate
DDoS attacks since the normalized entropy may not significantly decrease. Nevertheless, our P4DDoS still has higher (or
at least comparable) detection accuracy than SOTA DDoS for any coefficient k. This is due to the fact that the entropy
of destination IPs (not normalized) may decrease because of either a decrease in the cardinality of destination IPs in
consecutive time intervals (see Section 2.1) or because a DDoS attack is occurring. Instead, the normalized entropy (used
by P4DDoS) decreases only when a DDoS attack is occurring, since it is normalized to the cardinality of destination IPs.
Thus, by considering non-normalized entropy as the metric to detect DDoS attacks as done by SOTA DDoS, there is a
higher chance of false positives due to legitimate traffic oscillations in consecutive time intervals. It is also important to
note that the entropy of source IPs may not significantly increase when a Botnet DDoS attack occurs (as proven in [41]),
so a simpler entropy-based DDoS detection system only considering normalized entropy of destination IPs may suffice for
the detection of a wide range of attacks.

8 RELATED WORK

Here we recall existing works on flow cardinality estimation and on entropy-based DDoS detection in Software-Defined
Networks with programmable data planes.

Flow cardinality estimation for network monitoring: Many cardinality-estimation algorithms have been implemented
to be executed in programmable data planes for the purpose of network monitoring [5][6][16], often based on linear
counting [39]. However, all of them are able to only perform the update operation directly in the data plane, while the
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query operation has still to be executed by the controller. This is because programmable switches do not support arithmetic
operations such as logarithm and exponential function computation, which are needed for flow cardinality estimation.
Conversely, by leveraging our proposed strategies for logarithm and exponential-function estimation in the data plane,
named P4Log and P4Exp [1], we developed P4LogLog, a flow cardinality estimation algorithm that takes inspiration
from LogLog [13]. P4LogLog enables a flow cardinality estimation entirely in programmable switches, where both update
and query operations can be executed in the data plane. Moreover, our P4LogLog can estimate cardinality with high
accuracy while consuming less memory than existing approaches. Note that HyperLogLog [24] has higher theoretical
accuracy than LogLog, but it is currently not implementable in P4 language due to the computation of harmonic mean.
HyperLogLog can also be implemented in CPU-based and FPGA-based programmable data planes [42]. However, the
achievable throughput is limited and the adopted language is target-specific, while P4 can be used to program the data
plane pipeline of heterogeneous hardware/software targets.

Entropy-based DDoS detection: Entropy-based DDoS detection has been widely studied in the context of SDN: a
significant decrease in the (normalized) network entropy of destination IPs in a given time interval can be an indication
of occurrence of a DDoS attack [2][3][4][43]. However, in most of previous works, entropy estimation is executed by
the controller due to the complex way it is computed. Some works can be found in literature dealing with network
traffic entropy estimation performed partially in the switches’ data plane. For example, papers [6][7][16] all envision some
operations to be executed by the programmable data plane, so that only summarized data must be sent to the controller.
However, since the controller needs to frequently retrieve information from all the switches, the generated communication
overhead is significant. Recently, Lapolli et al. [17] have demonstrated the feasibility of performing network traffic entropy
estimation in the data plane using the P4 language, with the aim of detecting DDoS attacks. Their approach is valuable but
it requires the usage of TCAM, which is instead avoided by our proposed P4DDoS. Moreover, P4DDoS and P4NEntropy
adopt a time-based observation window, while [17] requires an observation window that includes a fixed power-of-two
number of packets, making their solution less flexible. In fact, our approach may allow a controller to synchronize the
retrieval of the estimated entropy from many programmable switches, paving the way towards the estimation of network
traffic entropy on a network-wide scale [11] to improve the statistical relevance of monitored values.

9 CONCLUSION AND FUTURE WORK

In this paper, relying on recently-proposed logarithmic and exponential function estimation solutions, we presented
P4LogLog to estimate the number of distinct flows in the network by only using P4-supported operations. We then
proposed P4NEntropy, a strategy that leverages P4LogLog for the estimation of normalized network traffic entropy directly
in the switch’s data plane. Finally, P4DDoS has been designed on top of P4NEntropy, with the goal of detecting DDoS
attacks by means of an entropy-based system.

We also evaluated all of our proposed approaches and compared them with state-of-the-art solutions. Results show
that P4LogLog has better accuracy than the state of the art especially when memory availability is small (i.e., smaller than
640 Bytes). Furthermore, P4NEntropy shows comparable accuracy on entropy estimation to existing approaches, but it
leverages time-based observation windows (instead of fixed packet-based) and avoids the usage of TCAM (relying only on
P4-supported operations). Finally, P4DDoS outperforms existing DDoS detection solutions implemented in P4 in terms of
detection accuracy, especially in the case of internal Botnet DDoS attacks, while implementing a simpler logic. Moreover,
unlike existing approaches in literature, all of our strategies avoid any communication overhead between controller and
programmable switches, since they work entirely in the data plane. Specifically, P4DDoS only reports an alarm to the
controller when an attack is detected.

As future work, we plan to extend our solution to detect other types of DDoS attacks, e.g. low-packet-rate, link flooding
or carpet bombing attacks, with high accuracy. Furthermore, we also intend to work on an algorithm for the entropy-based
detection of DDoS attacks on a network-wide scale, by collecting and combining the distributed entropy information from
multiple programmable switches.
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